Copied to
clipboard

G = C7×C4.9C42order 448 = 26·7

Direct product of C7 and C4.9C42

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C7×C4.9C42, C421C28, C28.32C42, (C2×C56)⋊3C4, (C2×C8)⋊1C28, (C4×C28)⋊4C4, C4.9(C4×C28), C28.50(C4⋊C4), (C2×C28).36Q8, C23.8(C7×D4), (C2×C28).277D4, (C22×C14).27D4, C42⋊C2.1C14, (C2×M4(2)).4C14, C28.101(C22⋊C4), (C14×M4(2)).16C2, (C22×C28).386C22, C14.21(C2.C42), C4.1(C7×C4⋊C4), (C2×C4).8(C7×D4), (C2×C4).1(C7×Q8), C22.1(C7×C4⋊C4), (C2×C4).63(C2×C28), C4.17(C7×C22⋊C4), (C2×C14).18(C4⋊C4), (C2×C28).324(C2×C4), C22.7(C7×C22⋊C4), (C22×C4).16(C2×C14), C2.2(C7×C2.C42), (C2×C14).70(C22⋊C4), (C7×C42⋊C2).15C2, SmallGroup(448,141)

Series: Derived Chief Lower central Upper central

C1C4 — C7×C4.9C42
C1C2C22C23C22×C4C22×C28C7×C42⋊C2 — C7×C4.9C42
C1C4 — C7×C4.9C42
C1C28 — C7×C4.9C42

Generators and relations for C7×C4.9C42
 G = < a,b,c,d | a7=b4=c4=d4=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, bd=db >

Subgroups: 154 in 94 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, C23, C14, C14, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C28, C28, C28, C2×C14, C2×C14, C2×C14, C42⋊C2, C2×M4(2), C56, C2×C28, C2×C28, C2×C28, C22×C14, C4.9C42, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C2×C56, C7×M4(2), C22×C28, C7×C42⋊C2, C14×M4(2), C7×C4.9C42
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, Q8, C14, C42, C22⋊C4, C4⋊C4, C28, C2×C14, C2.C42, C2×C28, C7×D4, C7×Q8, C4.9C42, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C7×C2.C42, C7×C4.9C42

Smallest permutation representation of C7×C4.9C42
On 112 points
Generators in S112
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 50 78 59)(2 51 79 60)(3 52 80 61)(4 53 81 62)(5 54 82 63)(6 55 83 57)(7 56 84 58)(8 100 25 44)(9 101 26 45)(10 102 27 46)(11 103 28 47)(12 104 22 48)(13 105 23 49)(14 99 24 43)(15 35 109 42)(16 29 110 36)(17 30 111 37)(18 31 112 38)(19 32 106 39)(20 33 107 40)(21 34 108 41)(64 90 71 98)(65 91 72 92)(66 85 73 93)(67 86 74 94)(68 87 75 95)(69 88 76 96)(70 89 77 97)
(1 22 68 32)(2 23 69 33)(3 24 70 34)(4 25 64 35)(5 26 65 29)(6 27 66 30)(7 28 67 31)(8 71 42 81)(9 72 36 82)(10 73 37 83)(11 74 38 84)(12 75 39 78)(13 76 40 79)(14 77 41 80)(15 62 100 98)(16 63 101 92)(17 57 102 93)(18 58 103 94)(19 59 104 95)(20 60 105 96)(21 61 99 97)(43 89 108 52)(44 90 109 53)(45 91 110 54)(46 85 111 55)(47 86 112 56)(48 87 106 50)(49 88 107 51)
(8 44 25 100)(9 45 26 101)(10 46 27 102)(11 47 28 103)(12 48 22 104)(13 49 23 105)(14 43 24 99)(15 35 109 42)(16 29 110 36)(17 30 111 37)(18 31 112 38)(19 32 106 39)(20 33 107 40)(21 34 108 41)(64 71)(65 72)(66 73)(67 74)(68 75)(69 76)(70 77)(85 93)(86 94)(87 95)(88 96)(89 97)(90 98)(91 92)

G:=sub<Sym(112)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,50,78,59)(2,51,79,60)(3,52,80,61)(4,53,81,62)(5,54,82,63)(6,55,83,57)(7,56,84,58)(8,100,25,44)(9,101,26,45)(10,102,27,46)(11,103,28,47)(12,104,22,48)(13,105,23,49)(14,99,24,43)(15,35,109,42)(16,29,110,36)(17,30,111,37)(18,31,112,38)(19,32,106,39)(20,33,107,40)(21,34,108,41)(64,90,71,98)(65,91,72,92)(66,85,73,93)(67,86,74,94)(68,87,75,95)(69,88,76,96)(70,89,77,97), (1,22,68,32)(2,23,69,33)(3,24,70,34)(4,25,64,35)(5,26,65,29)(6,27,66,30)(7,28,67,31)(8,71,42,81)(9,72,36,82)(10,73,37,83)(11,74,38,84)(12,75,39,78)(13,76,40,79)(14,77,41,80)(15,62,100,98)(16,63,101,92)(17,57,102,93)(18,58,103,94)(19,59,104,95)(20,60,105,96)(21,61,99,97)(43,89,108,52)(44,90,109,53)(45,91,110,54)(46,85,111,55)(47,86,112,56)(48,87,106,50)(49,88,107,51), (8,44,25,100)(9,45,26,101)(10,46,27,102)(11,47,28,103)(12,48,22,104)(13,49,23,105)(14,43,24,99)(15,35,109,42)(16,29,110,36)(17,30,111,37)(18,31,112,38)(19,32,106,39)(20,33,107,40)(21,34,108,41)(64,71)(65,72)(66,73)(67,74)(68,75)(69,76)(70,77)(85,93)(86,94)(87,95)(88,96)(89,97)(90,98)(91,92)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,50,78,59)(2,51,79,60)(3,52,80,61)(4,53,81,62)(5,54,82,63)(6,55,83,57)(7,56,84,58)(8,100,25,44)(9,101,26,45)(10,102,27,46)(11,103,28,47)(12,104,22,48)(13,105,23,49)(14,99,24,43)(15,35,109,42)(16,29,110,36)(17,30,111,37)(18,31,112,38)(19,32,106,39)(20,33,107,40)(21,34,108,41)(64,90,71,98)(65,91,72,92)(66,85,73,93)(67,86,74,94)(68,87,75,95)(69,88,76,96)(70,89,77,97), (1,22,68,32)(2,23,69,33)(3,24,70,34)(4,25,64,35)(5,26,65,29)(6,27,66,30)(7,28,67,31)(8,71,42,81)(9,72,36,82)(10,73,37,83)(11,74,38,84)(12,75,39,78)(13,76,40,79)(14,77,41,80)(15,62,100,98)(16,63,101,92)(17,57,102,93)(18,58,103,94)(19,59,104,95)(20,60,105,96)(21,61,99,97)(43,89,108,52)(44,90,109,53)(45,91,110,54)(46,85,111,55)(47,86,112,56)(48,87,106,50)(49,88,107,51), (8,44,25,100)(9,45,26,101)(10,46,27,102)(11,47,28,103)(12,48,22,104)(13,49,23,105)(14,43,24,99)(15,35,109,42)(16,29,110,36)(17,30,111,37)(18,31,112,38)(19,32,106,39)(20,33,107,40)(21,34,108,41)(64,71)(65,72)(66,73)(67,74)(68,75)(69,76)(70,77)(85,93)(86,94)(87,95)(88,96)(89,97)(90,98)(91,92) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,50,78,59),(2,51,79,60),(3,52,80,61),(4,53,81,62),(5,54,82,63),(6,55,83,57),(7,56,84,58),(8,100,25,44),(9,101,26,45),(10,102,27,46),(11,103,28,47),(12,104,22,48),(13,105,23,49),(14,99,24,43),(15,35,109,42),(16,29,110,36),(17,30,111,37),(18,31,112,38),(19,32,106,39),(20,33,107,40),(21,34,108,41),(64,90,71,98),(65,91,72,92),(66,85,73,93),(67,86,74,94),(68,87,75,95),(69,88,76,96),(70,89,77,97)], [(1,22,68,32),(2,23,69,33),(3,24,70,34),(4,25,64,35),(5,26,65,29),(6,27,66,30),(7,28,67,31),(8,71,42,81),(9,72,36,82),(10,73,37,83),(11,74,38,84),(12,75,39,78),(13,76,40,79),(14,77,41,80),(15,62,100,98),(16,63,101,92),(17,57,102,93),(18,58,103,94),(19,59,104,95),(20,60,105,96),(21,61,99,97),(43,89,108,52),(44,90,109,53),(45,91,110,54),(46,85,111,55),(47,86,112,56),(48,87,106,50),(49,88,107,51)], [(8,44,25,100),(9,45,26,101),(10,46,27,102),(11,47,28,103),(12,48,22,104),(13,49,23,105),(14,43,24,99),(15,35,109,42),(16,29,110,36),(17,30,111,37),(18,31,112,38),(19,32,106,39),(20,33,107,40),(21,34,108,41),(64,71),(65,72),(66,73),(67,74),(68,75),(69,76),(70,77),(85,93),(86,94),(87,95),(88,96),(89,97),(90,98),(91,92)]])

154 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F···4M7A···7F8A8B8C8D14A···14F14G···14X28A···28L28M···28AD28AE···28BZ56A···56X
order12222444444···47···7888814···1414···1428···2828···2828···2856···56
size11222112224···41···144441···12···21···12···24···44···4

154 irreducible representations

dim111111111122222244
type++++-+
imageC1C2C2C4C4C7C14C14C28C28D4Q8D4C7×D4C7×Q8C7×D4C4.9C42C7×C4.9C42
kernelC7×C4.9C42C7×C42⋊C2C14×M4(2)C4×C28C2×C56C4.9C42C42⋊C2C2×M4(2)C42C2×C8C2×C28C2×C28C22×C14C2×C4C2×C4C23C7C1
# reps12184612648242111266212

Matrix representation of C7×C4.9C42 in GL4(𝔽113) generated by

30000
03000
00300
00030
,
98000
09800
00980
00098
,
0010
0001
11211100
0100
,
1000
11211200
00980
001515
G:=sub<GL(4,GF(113))| [30,0,0,0,0,30,0,0,0,0,30,0,0,0,0,30],[98,0,0,0,0,98,0,0,0,0,98,0,0,0,0,98],[0,0,112,0,0,0,111,1,1,0,0,0,0,1,0,0],[1,112,0,0,0,112,0,0,0,0,98,15,0,0,0,15] >;

C7×C4.9C42 in GAP, Magma, Sage, TeX

C_7\times C_4._9C_4^2
% in TeX

G:=Group("C7xC4.9C4^2");
// GroupNames label

G:=SmallGroup(448,141);
// by ID

G=gap.SmallGroup(448,141);
# by ID

G:=PCGroup([7,-2,-2,-7,-2,-2,-2,-2,392,421,792,248,4911,14117]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^4=c^4=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,b*d=d*b>;
// generators/relations

׿
×
𝔽